Total synthesis, from D-xylose, of chiral, ring-contracted 1d-myoinositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate analogues with C-2 excised

David J. Jenkins and Barry V. L. Potter *
Department of Medicinal Chemistry, School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK BA2 7AY

A route to chiral, cyclopentane-based congeners of the second messenger 1D-myo-inositol 1,4,5trisphosphate and its enigmatic metabolite 1D-myo-inositol 1,3,4,5-tetrakisphosphate, starting from D-xylose, is described. Reaction of allyl α-D-xylopyranoside 7 with $2,2,3,3$-tetramethoxybutane gave a $1: 1$ mixture of the 2,3- and 3,4-butanediacetal-protected derivatives 8 and 9 . The latter was converted in four steps into 2- O-benzyl-3,4-bis- O-(p-methoxybenzyl)-D-xylopyranose 15 , which on reduction with sodium borohydride gave 2-O-benzyl-3,4-bis- O-(p-methoxybenzyl)-D-xylitol 16. Swern oxidation followed by samarium(II) iodide-mediated pinacol coupling gave a $1: 3$ mixture of $1 \mathrm{~L}-1,2,3,4 / 5$-1-benzyloxy-2,3-dihydroxy-4,5-bis-(p-methoxybenzyloxy)cyclopentane 18 and 1L-1,2,4/3,5-3-benzyloxy-1,2-dihydroxy-4,5-bis-(p-methoxybenzyloxy)cyclopentane 19 . The identity of the latter was confirmed by conversion into known compounds, and further elaboration gave the target compounds, $1 \mathrm{D}-1,2,4 / 3,5$-cyclopentanepentaol 1,3,4-trisphosphate 5 and 1D-1,2,4/3,5-cyclopentanepentaol-1,2,3,4-tetrakisphosphate 6.

Introduction

1D-myo-Inositol 1,4,5-trisphosphate $\left[\operatorname{Ins}(1,4,5) P_{3}, \mathbf{1}\right]$ is a second messenger responsible for increasing the intracellular Ca^{2+} concentration in stimulated cells. This results from its interaction with a tetrameric receptor situated in the lipid bilayer of the endoplasmic reticulum, ${ }^{1}$ and various subtypes of the receptor have been reported. ${ }^{2} \operatorname{Ins}(1,4,5) P_{3}$ is metabolised by two pathways: hydrolysis of the phosphate at position 5 by a low-affinity, high-capacity $\operatorname{Ins}(1,4,5) P_{3} 5$-phosphatase giving $\operatorname{Ins}(1,4) P_{2}$; or phosphorylation at position 3 by a high-affinity, low-capacity $\operatorname{Ins}(1,4,5) P_{3} 3$-kinase giving $\operatorname{Ins}(1,3,4,5) P_{4}$ 2. The role of the latter has been controversial since its discovery in 1985, ${ }^{3}$ and the recent isolation ${ }^{4}$ and characterisation ${ }^{5}$ of a highly selective $\operatorname{Ins}(1,3,4,5) P_{4}$-binding protein, named GAP1 ${ }^{\text {IP4BP }}$, has stimulated renewed interest in this tetrakisphosphate.

[^0]standing of the structure-recognition parameters at the Ins $(1,4,5) P_{3}$ receptor: a D -threo vicinal bisphosphate is essential, while an equivalent to the position-6 hydroxy group and a third phosphate help to enhance potency. ${ }^{6}$ In order to investigate how well the receptor will tolerate a smaller ring size, we wished to prepare a series of chiral cyclopentane derivatives in which the relative stereochemistry and substitution of positions equivalent to positions $4,5,6$ and 1 of $\operatorname{Ins}(1,4,5) P_{3}$ are retained. The first such compound, the vinylcyclopentane 3 , was found to be a weak full agonist; ${ }^{7}$ the potency was found to be significantly increased when the hydrophobic vinyl substituent was replaced by hydroxymethyl, to give compound 4. ${ }^{8}$ However, in principle the most desirable trisphosphate in this series is compound 5 , which represents the ring-contracted $\operatorname{Ins}(1,4,5) P_{3}$ derivative in which only the carbon atom at position 2 and its associated hydroxy group have been deleted. We reasoned that chiral compound 5 ought to be available by a route involving a samarium(II) iodide-mediated pinacol coupling ${ }^{9,10}$ of a suitably protected D-xylo-pentodialdose such as compound 17 (Scheme 2). We report here the synthesis of compound $\mathbf{5}$, together with the corresponding ring-contracted $\operatorname{Ins}(1,3,4,5) P_{4}$ tetrakisphosphate 6, from D-xylose

Results and discussion

Fischer glycosidation of D-xylose with allyl alcohol in the presence of HCl gave a mixture of pyranosides from which the α anomer 7 (Scheme 1) was isolated by crystallisation. Although uses of compound 7 have previously been reported, ${ }^{1,12}$ it is characterised for the first time here. Stannylene-mediated benzylation ${ }^{12,13}$ of compound 7 gave the required $2-O$-benzyl derivative 13 in only poor yield $(\sim 25-30 \%)$ on a 10 g scale and consequently it was decided to explore the use of the recently described ${ }^{14}$ butane-2,3-diacetal (BDA) protecting group with compound 7 , to complement other protecting strategies for xylopyranosides. ${ }^{12,13,15,16}$ Acid-catalysed reaction of compound 7 with 2,2,3,3-tetramethoxybutane ${ }^{14}$ in methanol gave, after 90 min, a $1: 1$ mixture of crystalline ($\mathbf{9}$) and syrupy ($\mathbf{8}$) products, which were separated by column chromatography in 93% yield (30 g scale); a prolonged reaction time did not alter the product ratio. The structures of products 9 and $\mathbf{8}$ were established by preparation of the corresponding acetates $\mathbf{1 1}$ and $\mathbf{1 0}$, the ${ }^{1} \mathrm{H}$

Scheme 1 Reagents and conditions: i, AllOH, HCl, reflux, 16 h ($\alpha-$ anomer by crystallisation, 28%); ii, $\mathrm{MeC}(\mathrm{OMe})_{2} \mathrm{C}(\mathrm{OMe})_{2} \mathrm{Me}, \mathrm{CSA}$, $\mathrm{MeOH},(\mathrm{MeO})_{3} \mathrm{CH}$, reflux, $90 \mathrm{~min}(93 \%)$; iii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, room temp., 2 h ; iv, $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{v}, 95 \%$ aq. TFA$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$, room temp., $15 \mathrm{~min}(84 \%$ from 9); vi, $\mathrm{NaH}, \mathrm{PMBCl}$, DMF, $60^{\circ} \mathrm{C}, 2.5 \mathrm{~h}(74 \%)$; vii (a) $\mathrm{Bu}^{t} \mathrm{OK}$, DMSO, $50^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$; (b) $\mathrm{Me}_{2} \mathrm{CO}-1$ м $\mathrm{HCl}(10: 1), 50^{\circ} \mathrm{C}$, $30 \mathrm{~min}(87 \%)$; viii, NaBH_{4}, THF-water (3:2), room temp., 2 h (77%)

NMR spectra of which respectively revealed a deshielded doublet of doublets and a deshielded double doublet of doublets. With seed crystals available it was possible to isolate compound 9 from the reaction mixture in $20-25 \%$ yield by crystallisation and tens of grams of the required isomer were routinely isolated in this way. The lack of selectivity in protection of compound 7 with the BDA protecting group is consistent with experiments on methyl α-d-glucopyranoside, which also gave a $1: 1$ mixture of products, ${ }^{14}$ but is in contrast with kinetic acetonation of methyl ${ }^{15 a}$ and benzyl ${ }^{15 b} \beta$-d-xylopyranosides, which gave the $2,3-O$-isopropylidene derivatives in greater than 70% yields. The unrequired isomer 8 was heated under reflux in methanol containing catalytic camphor-10-sulfonic acid (CSA) in an attempt to convert it into the $1: 1$ equilibrium mixture. ${ }^{17}$ However, a long reaction time was necessary and after 7 days a mixture of $\mathbf{9}, \mathbf{8}, 7$ and a $1: 1$ anomeric mixture of methyl xylopyranosides was obtained in yields of $15,14,14$ and 22%, respectively, making this an unsatisfactory method to procure further quantities of required regioisomer 9 .

Benzylation of compound 9 with sodium hydride and benzyl bromide in dimethylformamide (DMF) gave the 2-O-benzyl derivative $\mathbf{1 2}$ and the BDA group was then removed with trifluoroacetic acid (TFA) to give compound 13 in 84% yield for the two steps. In contrast to allyl 2,6 -di- O-benzyl- α-d-glucopyranoside, which was smoothly di- $O-p$-methoxybenzylated at room temp., ${ }^{18}$ a mixture of diol 13, sodium hydride and p methoxybenzyl chloride (PMBCl) in DMF required heating at $60^{\circ} \mathrm{C}$ in order to give a good yield of fully protected compound 14. It was felt necessary to replace the BDA group with p-methoxybenzyl ethers for two reasons. First, the presence of ketals next to an aldehyde group has been reported to cause side-reactions in the SmI_{2}-pinacol coupling, whereas ethers do
not, ${ }^{9}$ and, secondly, ethers adjacent to the aldehyde groups tend to direct cis-diol formation in the cyclitol products. ${ }^{19}$

Isomerisation of the allyl group of compound $\mathbf{1 4}$ with potassium tert-butoxide in dimethyl sulfoxide (DMSO) ${ }^{20}$ followed by acidic hydrolysis of the resulting enol ethers gave xylopyranose 15 in 87% yield as a $\sim 7: 3 \alpha: \beta$ anomeric mixture, as judged by NMR spectroscopy. Compound $\mathbf{1 5}$ is also a useful intermediate in the preparation of xylose-based analogues of the potent Ins $(1,4,5) P_{3}$ receptor agonist adenophostin A. ${ }^{12,21}$ Reduction of compound 15 with sodium borohydride in tetrahydrofuran (THF)-water cleanly furnished xylitol 16 in 77% yield. The structure $\mathbf{1 6}$ was assigned on the basis of NMR spectroscopy: in the ${ }^{1} \mathrm{H}$ spectrum the two hydroxy protons presented as triplets which exchanged with $\mathrm{D}_{2} \mathrm{O}$; in the ${ }^{13} \mathrm{C}$ spectrum the methylene carbons resonated at $\delta_{\mathrm{C}} 61.6$, the three alkoxymethines resonated at $\delta_{\mathrm{C}} 78.5,78.9$ and 79.0 , and in both spectra signals characteristic of carbohydrate rings were absent.
Swern oxidation ${ }^{22}$ of the xylitol 16 gave the required dialdose 17 (Scheme 2), which was azeotropically dried before being treated with an excess of samarium(II) iodide and 2-methyl-propan-2-ol in THF ${ }^{19}$ to give the products 18 and 19 in the ratio $\sim 1: 3$. The identity of the major product 19 was established by chemical correlation with known compounds 22 and 23 and support for a five-membered-ring structure came from the ${ }^{13} \mathrm{C}$ NMR spectrum, which showed signals corresponding to alkoxymethine carbons at $\delta_{\mathrm{C}} 85.3-86.3$ and to hydroxymethine carbons at $\delta_{\mathrm{C}} 73.9$; signals arising from methylene carbons other than those of protecting groups were absent. The minor product $\mathbf{1 8}$ could not be separated from an impurity and was therefore characterised as its isopropylidene acetal 20. Acidic hydrolysis of compound 19 gave tetraol 21. Hydrogenation of monobenzyl ether 21 gave the known ${ }^{23,24}$ 1,2,4/3,5-cyclopentanepentaol 22, which on benzoylation gave the known ${ }^{23}$ pentabenzoate 23, thereby confirming the stereochemistry of diol 19 and derivatives and, since compound 18 contains a cisdiol (as deduced from the formation of an isopropylidene derivative), also indirectly confirming its stereochemistry too. The $1: 3$ product ratio for the pinacol coupling is consistent with the results of Perrin et al. ${ }^{10}$ obtained from the symmetrical 2,3,4-tri- O-benzylpentodialdose, and the isolation exclusively of $c i s$-diol products is also consistent with precedent. ${ }^{9,10,19,25}$
Tetraol 21 was phosphitylated with tetrazole-activated bis(benzyloxy)(diisopropylamino)phosphine ${ }^{26}$ in methylene dichloride. Owing to the relatively poor solubility of tetraol 21 in this solvent, a long reaction time of 2 h was necessary. Oxidation of the intermediate tetrakisphosphite with m-chloroperbenzoic acid (MCPBA) gave fully protected compound 24, which was deprotected by hydrogenation to furnish the target tetrakisphosphate 6 . Compound 6 was purified by ionexchange chromatography, was isolated as its triethylammonium salt, and quantified by total phosphate assay. ${ }^{27,28}$
Attention now turned to preparation of the target trisphosphate 5. Stannylene-mediated benzylation of cis-diol 19 with 1.1 mol equiv. of dibutyltin oxide and 1.2 mol equiv. of benzyl bromide gave a $\sim 1: 1$ mixture of bisbenzyl ethers $\mathbf{2 5}$ and $\mathbf{2 6}$ in 87% yield. These isomers could not be separated, but upon acidic hydrolysis of the mixture the triols 27 and $\mathbf{2 8}$ were easily separated by column chromatography. The structures of triols 27 and 28 were assigned as follows: a sample of each was converted into its triacetate, giving compounds 29 and $\mathbf{3 0}$ respectively, and the ${ }^{1} \mathrm{H}$ NMR spectra of the latter were compared. The spectrum of compound $\mathbf{2 9}$ was non-first order and therefore not useful. However, the 2D ${ }^{1} \mathrm{H}$ chemical-shift-correlation (COSY) spectrum of compound $\mathbf{3 0}$ showed that the two most shielded ring methines (i.e. those geminal to benzyloxy substituents) at $\delta 3.97$ and 4.07 coupled to each other, while one of the deshielded methine protons geminal to an acetate at $\delta 5.27$ coupled only to the two other deshielded protons and was therefore assigned as the proton at position 3. These observations are consistent only with the structure 30. Further evi-

Scheme 2 Reagents and conditions: i (a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}_{2},-60^{\circ} \mathrm{C}, 15 \mathrm{~min} ;(b) \mathrm{Et}_{3} \mathrm{~N}$, room temp., 15 min ; (c) toluene, reflux (Dean-Stark trap), 1 h ; ii, $\mathrm{SmI}_{2}, \mathrm{Bu}^{t} \mathrm{OH}, \mathrm{N}_{2},-60^{\circ} \mathrm{C}$ to room temp., $4 \mathrm{~h}(43 \%$ from 16); iii, 2,2-dimethoxypropane-DMF, PTSA, room temp., $2 \mathrm{~h} ; \mathrm{iv}, 1 \mathrm{~m} \mathrm{HCl}-$ EtOH ($1: 2$), reflux, $2.5 \mathrm{~h}(76 \%)$; v, $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, MeOH -water ($4: 1$), room temp., $40 \mathrm{~h}(79 \%)$; vi, BzCl, pyridine, room temp., 16 h ; vii (a) $(\mathrm{BnO})_{2} \mathrm{PNPr}^{\mathrm{i}}{ }_{2}, 1 \mathrm{H}$-tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 2 h ; (b) MCPBA, $0^{\circ} \mathrm{C}, 10 \mathrm{~min} ;$ viii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{NaHCO}{ }_{3}, \mathrm{MeOH}$-water ($4: 1$), room temp., 48 h ; $\mathrm{ix}, \mathrm{Bu}_{2} \mathrm{SnO}, \mathrm{BnBr}, \mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{MeCN}, 4 \AA$ sieves, reflux, $24 \mathrm{~h}(87 \%)$; $\mathrm{x}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine, room temp., 2 h
dence came from considering the NMR spectrum of triol 27: the most deshielded ring carbon atoms are the benzylated ones, due to the α-effect of alkylation; ${ }^{29}$ the protons attached to these carbon atoms, as revealed in the $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum, did not couple to each other, as revealed in the $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, an observation consistent with the proposed structure.

Phosphitylation and subsequent oxidation of triol 27 gave fully protected compound 31. Hydrogenation of compound 31 gave the target trisphosphate 5. However, both ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra clearly showed the presence of a trisphosphate impurity, presumably the migration product 32 of ring-opening of the cyclic intermediate 33 (Scheme 3); such a reaction is well precedented. The impurity comprised $\sim 5-8 \%$ of the product, as judged by the integral ratios of duplicate signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. Leaving the mixture of trisphosphates as their
free acids in aqueous solution at ambient temperature gradually increased the proportion of minor product to $\sim 30 \%$ over a period of three days, as judged by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and to $\sim 50 \%$ after $7-10$ days. The acid-catalysed migration problem was overcome simply by including 3 mol equiv. of sodium hydrogen carbonate in the hydrogenation mixture; ${ }^{30}$ in this case no migration occurred and pure compound 5 was purified by ion-exchange chromatography, isolated as its tris(triethylammonium) salt and quantified by total phosphate assay. ${ }^{27,28}$ In some cases, however, the presence of sodium hydrogen carbonate appeared to slow the deprotection reaction.

The preparation of polyphosphates 5 and 6 represents further progress in our efforts to design inositol phosphate congeners that are structurally diverse from the parent compounds and these target compounds will be used to explore structureactivity aspects of binding to functional receptors and

Scheme 3 Phosphate migration on deprotection of compound 31
metabolic enzymes. In the case of trisphosphate 5 a preliminary examination showed that when this compound was microinjected into Xenopus oocytes it was able to induce $\operatorname{Ins}(1,4,5) P_{3^{-}}$like oscillations indicative of release of Ca^{2+} stores, but a higher concentration was required relative to $\operatorname{Ins}(1,4,5) P_{3}$. Full biological and physicochemical evaluation of polyphosphates 5 and $\mathbf{6}$ is in progress and will be reported elsewhere.

Experimental

Materials and methods

Chemicals were purchased from Aldrich, Sigma and Fluka. Light petroleum refers to the fraction with boiling range $40-$ $60^{\circ} \mathrm{C}$. Methylene dichloride and 2-methylpropan-2-ol were dried over calcium hydride, distilled, and kept over 4 Å molecular sieves. DMF was distilled from barium oxide under reduced pressure and then stored over $4 \AA$ molecular sieves. THF was dried by distillation from sodium in the presence of benzophenone ketyl. DMSO was purchased in anhydrous form.

TLC was performed on precoated plates (Merck aluminium sheets silica $60 F_{254}$, Art. No. 5554). Products were visualised by being sprayed with phosphomolybdic acid in methanol followed by heating. Flash chromatography refers to the method of Still et al. ${ }^{31}$ and was carried out using Sorbsil C60 silica gel.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JMN GX270 or EX-400 NMR spectrometers. Unless otherwise stated, chemical shifts were measured in ppm relative to internal tetramethylsilane. ${ }^{31} \mathrm{P}$ NMR spectra were recorded on an EX400 NMR spectrometer, and ${ }^{31} \mathrm{P}$ NMR chemical shifts were measured in ppm and denoted positive downfield from external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4} . J$ Values are given in Hz . Mps (uncorrected) were determined using a Reichert-Jung Thermo Galen Kofler block. Microanalysis was carried out at the University of Bath Microanalysis Service. FAB Mass spectra [m-nitrobenzyl alcohol ($m \mathrm{NBA}$)] were recorded at the University of Bath Mass Spectrometry Service using a VG Analytical Autospec Mass Spectrometer. Optical rotations were measured at ambient temperature using an Optical Activity Ltd. AA-10 polarimeter, and [$a]_{\mathrm{D}}$-values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ion-exchange chromatography was performed on an LKB-Pharmacia MediumPressure Ion-Exchange Chromatograph using Sepharose Q Fast Flow resin and gradients of triethylammonium hydrogen carbonate (TEAB) as eluent. Compounds containing phosphates were assayed by the Briggs phosphate test. ${ }^{27,28}$

Allyl $\boldsymbol{\alpha}$-d-xylopyranoside 7
Acetyl chloride ($8.0 \mathrm{~cm}^{3}$) was added dropwise to allyl alcohol $\left(1200 \mathrm{~cm}^{3}\right)$ and the solution was stirred for 20 min at room temp., whereupon D-xylose ($150 \mathrm{~g}, 1.0 \mathrm{~mol}$) was added and the mixture was heated under reflux for 16 h . The resultant pale yellow solution was cooled to room temp. and was then stirred with an excess of Amberlite IR-45 (OH^{-}) for 1 h . The mixture was filtered and the filtrate was concentrated to give a viscous yellow syrup which solidified to a waxy solid on storage. This solid was dissolved in ethanol ($1200 \mathrm{~cm}^{3}$) and refrigerated at $-20^{\circ} \mathrm{C}$. The title compound was collected as an amorphous solid over 3 crops ($53.3 \mathrm{~g}, 28 \%$); $R_{\mathrm{f}} 0.54$ (ethyl acetate-propan1 -ol-water 9:4:2); mp $101-103^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+149$ (c 3.2, water) (Found: C, 50.7; H, 7.53. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, $50.5 ; \mathrm{H}, 7.42 \%$); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O} ; 270 \mathrm{MHz}\right.$; ref. int. HDO) 3.55-3.69 (5 H, m, 2-, 3- and $4-\mathrm{H}$, and $\left.5-\mathrm{H}_{2}\right), 4.01-4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.92(1 \mathrm{H}, \mathrm{d}$, $J 3.5,1-\mathrm{H}), 5.25\left(1 \mathrm{H}, \mathrm{d}, J 10.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.35(1 \mathrm{H}$, d, J 17.2, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}$) and $5.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O} ; 100 \mathrm{MHz}\right) 62.02(\mathrm{C}-5), 69.43\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 70.24$ (C-4), $72.08(\mathrm{C}-2), 74.04(\mathrm{C}-3), 98.31(\mathrm{C}-1), 119.10\left(\mathrm{CH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right)$ and $134.39\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; m / z\left(\mathrm{FAB}^{+}\right) 133[(\mathrm{M}-$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right)^{+}, 100 \%\right]$; $\left(\mathrm{FAB}^{-}\right) 189\left[(\mathrm{M}-1)^{-}, 52 \%\right]$ and $343[(\mathrm{M}+$ NBA) $\left.{ }^{-}, 100\right]$.
($1 R, 3 S, 4 S, 6 R, 9 S, 10 R$)-9-Allyloxy-10-hydroxy-3,4-dimethoxy-3,4-dimethyl-2,5,8-trioxabicyclo[4.4.0]decane 9 and ($1 S, 3 R$, $4 R, 6 R, 7 S, 10 R$)-7-allyloxy-10-hydroxy-3,4-dimethoxy-3,4-dimethyl-2,5,8-trioxabicyclo[4.4.0]decane 8
A solution of xylopyranoside $7(30.0 \mathrm{~g}, 0.16 \mathrm{~mol}), 2,2,3,3-$ tetramethoxybutane ${ }^{14}\left(38.0 \mathrm{~cm}^{3}, 0.19 \mathrm{~mol}\right)$, trimethyl orthoformate $\left(69.0 \mathrm{~cm}^{3}, 0.63 \mathrm{~mol}\right)$ and CSA $(1.8 \mathrm{~g}, 8.0 \mathrm{mmol})$ in methanol ($500 \mathrm{~cm}^{3}$) was heated under reflux for 90 min , when TLC (ethyl acetate) showed consumption of starting material $\left(R_{\mathrm{f}} 0.1\right)$ and TLC $\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.9: 1\right)$ showed the presence of two products $\left(R_{\mathrm{f}} 0.43\right.$ and 0.24$)$. Solid $\mathrm{NaHCO}_{3}(2 \mathrm{~g})$ was carefully added in portions and the suspension was cooled to room temp. The solvents were evaporated off and the residue was partitioned between diethyl ether ($300 \mathrm{~cm}^{3}$) and water (300 cm^{3}). The aqueous layer was back-extracted with diethyl ether ($300 \mathrm{~cm}^{3}$) and the combined organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The syrup thus obtained was subjected to flash chromatography (eluent CHCl_{3}-acetone $20: 1$) to give title compound 9 , which crystallised as fine needles from light petroleum ($22.1 \mathrm{~g}, 46 \%$); mp $98-99^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+285$ (c $1.9, \mathrm{CHCl}_{3}$) (Found: C, 55.3; $\mathrm{H}, 8.05 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires C, $55.24 ; \mathrm{H}, 7.95 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 1.30$ and 1.35 $(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 2.06\left(1 \mathrm{H}, \mathrm{d}, J 9.3\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, 10-\mathrm{OH}\right), 3.27$ and $3.31(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.54-3.58\left(1 \mathrm{H}, \mathrm{ABX},{ }^{2} J_{\mathrm{AB}} 9.8\right.$, $\left.{ }^{3} J 4.4,7-\mathrm{H}\right), 3.66-3.78(3 \mathrm{H}, \mathrm{m}, 6-, 7-\mathrm{and} 10-\mathrm{H}), 3.86(1 \mathrm{H}, \mathrm{t}$, $J 9.8,1-\mathrm{H}), 3.98-4.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}=\mathrm{CH}_{2}\right), 4.21-4.25(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH} H \mathrm{CH}=\mathrm{CH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J 3.9,9-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{m}$, $\left.{ }^{2} J 1.0,{ }^{3} J 10.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.30\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.0,{ }^{3} J\right.$ 17.6, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right)$ and $5.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 17.65$ and $17.85(2 \times \mathrm{Me}), 47.99$ and 49.67 $(2 \times \mathrm{OMe}), 60.02(\mathrm{C}-7), 66.18(\mathrm{CH}), 68.53\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 69.86 and $70.94(2 \times \mathrm{CH}), 97.75(\mathrm{C}-9), 99.56$ and $99.91(\mathrm{C}-3$, -4), $118.12\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $133.57\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{FAB}^{+}\right) 305\left[(\mathrm{M}+1)^{+}, 8 \%\right], 273\left[(\mathrm{M}-\mathrm{OMe})^{+}, 40\right]$ and 101 (100).

A sample of compound 9 was converted to its crystalline acetate 11 with acetic anhydride in pyridine; mp $73^{\circ} \mathrm{C}$ (from light petroleum $60-80^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}+252\left(c 0.7, \mathrm{CHCl}_{3}\right)$ (Found: C, $55.5 ; \mathrm{H}, 7.63 . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 55.47 ; \mathrm{H}, 7.57 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $270 \mathrm{MHz}) 1.29$ and $1.30(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeCO}_{2}\right), 3.27$ and $3.29(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and $10.0,7-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{t}, J 10.5,1-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{ddd}, J 5.3$, 9.4 and $10.5,6-\mathrm{H}), 3.92-4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}=\mathrm{CH}_{2}\right), 4.09-$ $4.20\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}^{\prime}, \mathrm{CH} H \mathrm{CH}=\mathrm{CH}_{2}\right), 4.77(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $10.5,10-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, J 3.8,9-\mathrm{H}), 5.19\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.0,{ }^{3} J\right.$ 10.3, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.28\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.0,{ }^{3} J\right.$ 17.2,
$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}$) and $5.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{FAB}^{+}\right) 315\left[(\mathrm{M}-\mathrm{OMe})^{+}, 60 \%\right]$ and 101 (100).

Further elution gave compound $\mathbf{8}$ as a pale yellow syrup (23.0 $\mathrm{g}, 47 \%) ;[a]_{\mathrm{D}}-59.1\left(c 1.85, \mathrm{CHCl}_{3}\right)$ (Found: C, $54.8 ; \mathrm{H}, 7.92$. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires C, $\left.55.24 ; \mathrm{H}, 7.95 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right)$ 1.32 and $1.33(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.25$ and $3.29(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.58\left(1 \mathrm{H}, \mathrm{t},{ }^{2} J={ }^{3} J=10.7,9-\mathrm{H}^{\mathrm{ax}}\right)$, $3.67-3.71\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 9-\mathrm{H}^{\mathrm{eq}}\right), 3.84(1 \mathrm{H}$, ddd, $J 5.9,9.8$ and 10.7, $10-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{t}, J 9.8,1-\mathrm{H}), 4.09-4.14(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHHCH}=\mathrm{CH}_{2}\right), 4.18-4.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}=\mathrm{CH}_{2}\right), 4.84(1 \mathrm{H}$, d, J3.4, 7-H), $5.20\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} J 10.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s} \mathrm{H}_{\text {trans }}\right)$, $5.33\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} J 17.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right)$ and $5.92(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 17.67$ and 17.94 $(2 \times \mathrm{Me}), 47.84$ and $47.93(2 \times \mathrm{OMe}), 62.00(\mathrm{C}-9), 68.00(\mathrm{CH})$, $68.05\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 68.14$ and $69.95(2 \times \mathrm{CH}), 95.67(\mathrm{C}-7)$, 99.45 and $99.90(\mathrm{C}-3,-4), 117.85\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 134.01 $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; ~ m / z \quad\left(\mathrm{FAB}^{+}\right) 305 \quad\left[(\mathrm{M}+1)^{+}, \quad 10 \%\right], 273$ $\left[(\mathrm{M}-\mathrm{OMe})^{+}, 50\right]$ and 101 (100).

A sample of compound $\mathbf{8}$ was converted to its syrupy acetate 10 with acetic anhydride in pyridine; $R_{\mathrm{f}} 0.6\left(\mathrm{CHCl}_{3}\right.$-acetone 9:1); $[a]_{\mathrm{D}}-61.8$ (c 1.2, CHCl_{3}) (Found: C, 55.4; H, 7.54. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{8}$ requires C, $\left.55.47 ; \mathrm{H}, 7.57 \%\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right)$ 1.27 and $1.32(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 3.25$ and $3.27(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.7,1-\mathrm{H}), 3.76-3.82(2$ $\mathrm{H}, \mathrm{m}, 6-, 9-\mathrm{H}), 4.08-4.21\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 9-\mathrm{H}^{\prime}\right), 4.84$ $(1 \mathrm{H}, \mathrm{d}, J 3.4,7-\mathrm{H}), 4.92(1 \mathrm{H}$, ddd, $J 5.9,9.8$ and $10.7,10-\mathrm{H}$), $5.22\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} J 10.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} \mathrm{H}_{\text {trans }}\right)$, $5.34(1 \mathrm{H}$, $\left.\mathrm{m},{ }^{2} J 1.5,{ }^{3} \mathrm{~J} 17.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right)$ and $5.94(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; m / z\left(\mathrm{FAB}^{+}\right) 347\left[(\mathrm{M}+1)^{+}, 10 \%\right], 315[(\mathrm{M}-$ $\mathrm{OMe}^{+}, 60$ and 101 (100).

Equilibration of compound 8

A solution of butanediacetal $\mathbf{8}(7.10 \mathrm{~g}, 23.3 \mathrm{mmol})$ in methanol ($250 \mathrm{~cm}^{3}$) containing CSA (250 mg) was heated under reflux for 1 week. The solution was cooled and solid $\mathrm{NaHCO}_{3}(1 \mathrm{~g})$ was added. Stirring was continued for 10 min , then the suspension was filtered and the filtrate was concentrated. The orange syrup thus obtained was partitioned between diethyl ether ($200 \mathrm{~cm}^{3}$) and water $\left(200 \mathrm{~cm}^{3}\right)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give an orange syrup, which was subjected to flash chromatography (eluent CHCl_{3}-acetone $20: 1$) to give regioisomer $9(1.09 \mathrm{~g}, 15 \%)$; mp $98-99^{\circ} \mathrm{C}$; mixed $\operatorname{mp} 97-99^{\circ} \mathrm{C}$.

Further elution gave starting material ($1.02 \mathrm{~g}, 14 \%$ recovery). A series of faint shadow spots less mobile than starting material 8 were not isolated.

The aqueous layer was concentrated and ethanol $(3 \times 250$ cm^{3}) was evaporated off from the residue. The resultant cloudy syrup was subjected to flash chromatography (eluent ethyl acetate-methanol 9:1) to give allyl glycoside 7 ($613 \mathrm{mg}, 14 \%$); mp 99-103 ${ }^{\circ} \mathrm{C}$.

Further elution gave a syrupy product, which was shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be a $\sim 1: 1$ anomeric mixture of methyl D-xylopyranosides ($846 \mathrm{mg}, 22 \%$); selected $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $270 \mathrm{MHz}) 3.36$ and $3.50(2 \mathrm{~s}, \mathrm{OMe}$ of α and β anomers), 4.28 $\left(0.5 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H}^{\beta}\right)$ and $4.74\left(0.5 \mathrm{H}, \mathrm{d}, J 3.3,1-\mathrm{H}^{\alpha}\right)$. The α and β superscripts denote signals arising from the α and β anomers respectively.

(1R,3S,4S,6R,9S,10R)-9-Allyloxy-10-benzyloxy-3,4-dimethoxy-3,4-dimethyl-2,5,8-trioxabicyclo[4.4.0]decane 12

A solution of alcohol $9(21.0 \mathrm{~g}, 68.9 \mathrm{mmol})$ in dry DMF (400 cm^{3}) was stirred with sodium hydride $[3.2 \mathrm{~g}$ of a $60 \%(\mathrm{w} / \mathrm{w})$ dispersion in mineral oil, 75.7 mmol] and benzyl bromide (9.0 $\mathrm{cm}^{3}, 75.7 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ for 2 h , when TLC $\left(\mathrm{CHCl}_{3}\right.$-acetone 9:1) showed consumption of starting material ($R_{\mathrm{f}} 0.3$) to give a product ($R_{\mathrm{f}} 0.65$). Methanol ($50 \mathrm{~cm}^{3}$) was added and the mixture was stirred for a further 15 min . The solvents were evaporated off and the residue was partitioned between diethyl ether $\left(400 \mathrm{~cm}^{3}\right)$ and water $\left(400 \mathrm{~cm}^{3}\right)$. The organic layer was dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give 27.9 g of a pale yellow syrup, which was used directly in the next step. A portion was subjected to flash chromatography (eluent CHCl_{3}-acetone $20: 1$) to give an analytically pure sample of compound $\mathbf{1 2}$ as a syrup; $[a]_{\mathrm{D}}+159$ (c 5.3, CHCl_{3}) (Found: C, 64.2; H, 7.65. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{7}$ requires C, $\left.63.93 ; \mathrm{H}, 7.67 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right)$ 1.30 and $1.35(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 3.27$ and $3.32(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{OMe}), 3.47-3.55(2 \mathrm{H}, \mathrm{m}, 7-, 10-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{t}$, $\left.{ }^{2} J={ }^{3} J=10.7,7-\mathrm{H}^{\prime}\right), 3.75(1 \mathrm{H}$, ddd, $J 4.9,9.3$ and $10.7,6-\mathrm{H})$, $4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}=\mathrm{CH}_{2}\right), 4.11-4.18(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} H-$ $\left.\mathrm{CH}=\mathrm{CH}_{2}, 1-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.5, \mathrm{PhCHHO}\right), 4.76(1 \mathrm{H}$, d, $J 3.4,9-\mathrm{H}), 4.86\left(1 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.5, \mathrm{PhCH} H \mathrm{O}\right), 5.20(1 \mathrm{H}, \mathrm{m}$, $\left.{ }^{3} J 10.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H_{c i s} \mathrm{H}_{\text {trans }}\right), 5.30\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} \mathrm{~J} 17.1, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right), 5.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 7.26-7.37 (5 $\mathrm{H}, \mathrm{m}, \mathrm{PhH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 17.67$ and $18.00(2 \times \mathrm{Me})$, 47.95 and $48.06(2 \times \mathrm{OMe}), 59.53(\mathrm{C}-7), 66.70(\mathrm{CH}), 68.11$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 70.19(\mathrm{CH}), 73.35\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 76.55(\mathrm{C}-10)$, 96.54 (C-9), 99.56 and $99.71(\mathrm{C}-3,-4), 118.05\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 127.54, 127.65 and $128.27(\mathrm{Ph}), 133.85\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 138.79 (ipso-C); m/z $\left(\mathrm{FAB}^{+}\right) 395\left[(\mathrm{M}+1)^{+}, 4 \%\right], 363$ [(M -OMe$\left.)^{+}, 85\right]$ and 91 (100).

Allyl 2-O-benzyl- α-d-xylopyranoside 13

The syrup from the previous step (27.9 g) was dissolved in methylene dichloride ($100 \mathrm{~cm}^{3}$) and 95% (v/v) TFA in water $\left(100 \mathrm{~cm}^{3}\right)$ was added. The solution was stored at room temp. for 15 min , then the solvents were evaporated off. The residue was dissolved in diethyl ether $\left(400 \mathrm{~cm}^{3}\right)$ and the solution was washed with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 400 \mathrm{~cm}^{3}\right)$. The combined aqueous washings were back-extracted with diethyl ether (200 cm^{3}) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The concentrate was subjected to flash chromatography (eluent hexane-ethyl acetate 1:3, then ethyl acetate) to give the title compound as a pale yellow syrup (16.2 g , 84% from 9); $[a]_{\mathrm{D}}+113\left(c 2.3, \mathrm{CHCl}_{3}\right)$ (Found: C, 63.9; H, 7.22. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$ requires C, $\left.64.26 ; \mathrm{H}, 7.20 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right)$ $3.31(1 \mathrm{H}$, dd, $J 3.4$ and $9.5,2-\mathrm{H}), 3.44-3.62(5 \mathrm{H}, \mathrm{m}$, simplifies to 3 H on $\mathrm{D}_{2} \mathrm{O}$ exch., $2 \times \mathrm{OH}, 4-\mathrm{H}$ and $\left.5-\mathrm{H}_{2}\right), 3.85-3.94(2 \mathrm{H}$, br m, sharpens on $\mathrm{D}_{2} \mathrm{O}$ exch., $\left.\mathrm{C} H \mathrm{HCH}=\mathrm{CH}_{2}, 3-\mathrm{H}\right), 4.11-4.18$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{CH}=\mathrm{CH}_{2}\right), 4.63$ and $4.64\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 12.0\right.$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.75(1 \mathrm{H}, \mathrm{d}, J 3.5,1-\mathrm{H}), 5.20\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} J 10.3\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.31\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} \mathrm{~J} 17.2, \mathrm{CH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right), 5.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.30-7.35(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 67.8 \mathrm{MHz}\right) 61.42(\mathrm{C}-5), 68.20\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $70.00(\mathrm{C}-4), 72.80\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 73.19(\mathrm{C}-3), 79.34(\mathrm{C}-2), 95.42$ (C-1), $117.87\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 128.04,128.12$ and $128.51(\mathrm{Ph}$ CH), $133.76\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 137.92 (ipso-C); $m / z\left(\mathrm{FAB}^{-}\right)$ $279\left[(\mathrm{M}-1)^{-}, 58 \%\right]$ and $433\left[(\mathrm{M}+\mathrm{NBA})^{-}, 100\right]$.

Allyl 2-O-benzyl-3,4-bis- O-(p-methoxybenzyl)- α-D-xylopyrano-

 side 14A solution of diol $\mathbf{1 3}(16.2 \mathrm{~g}, 57.7 \mathrm{mmol})$ in dry DMF $\left(400 \mathrm{~cm}^{3}\right)$ was stirred with sodium hydride [6.0 g of a $60 \%(\mathrm{w} / \mathrm{w})$ dispersion in mineral oil, 144 mmol and $\mathrm{PMBCl}\left(16.4 \mathrm{~cm}^{3}, 121\right.$ mmol) at $60^{\circ} \mathrm{C}$ for 2.5 h , when TLC (ethyl acetate-hexane 3:2) showed conversion of starting material ($R_{\mathrm{f}} 0.15$) into a product ($R_{\mathrm{f}} 0.7$). The mixture was cooled to room temp., methanol (50 cm^{3}) was added, and stirring was continued for 15 min . The solvents were evaporated off and the dark brown residue was extracted with methylene dichloride ($3 \times 300 \mathrm{~cm}^{3}$). The combined organic extracts were washed successively with water (300 cm^{3}) and saturated aq. $\mathrm{NaCl}\left(500 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography of the concentrate (eluent hexane-ethyl acetate $9: 1$, then $3: 1$) gave the title compound as a pale yellow syrup ($22.2 \mathrm{~g}, 74 \%$); $[a]_{\mathrm{D}}+30.9$ (c 1.4, CHCl_{3}) (Found: C, 71.8; H, 6.93. $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{7}$ requires C, 71.50 ; $\mathrm{H}, 6.97 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 3.44(1 \mathrm{H}, \mathrm{dd}, J 3.4,9.3,2-\mathrm{H})$, $3.51-3.55\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.79$ and $3.80(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{OMe}), 3.87-3.91(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}), 3.95-4.00(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H \mathrm{HCH}=\mathrm{CH}_{2}\right), 4.12-4.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{CH}=\mathrm{CH}_{2}\right), 4.54$ and
$4.68\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.2, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.64$ and $4.77\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ 12.2, $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J 3.4,1-\mathrm{H}), 4.79$ and $4.84(2 \mathrm{H}$, $\left.\mathrm{AB}, J_{\mathrm{AB}} 10.3, \mathrm{ArCH}_{2} \mathrm{O}\right), 5.21\left(1 \mathrm{H}, \mathrm{m},{ }^{3} \mathrm{~J} 10.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{c i s^{-}}\right.$ $\left.\mathrm{H}_{\text {trans }}\right)$, $5.31\left(1 \mathrm{H}, \mathrm{m},{ }^{2} J 1.5,{ }^{3} J 17.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {rrans }}\right)$, 5.91 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.85-6.87(4 \mathrm{H}, \mathrm{m}$, ortho-H of PMB rings) and $7.23-7.36(9 \mathrm{H}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 55.25$ $(2 \times \mathrm{OMe}), 60.13(\mathrm{C}-5), 68.01\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 73.21,73.32$ and $75.48\left(3 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 77.85(\mathrm{C}-4), 79.66(\mathrm{C}-2), 81.20(\mathrm{C}-3)$, 95.70 (C-1), 113.75 and 113.83 ($2 \times$ ortho -C of PMB rings), $118.03\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 127.78,128.00,128.09,128.38,129.42$ and $129.66(\mathrm{Ar} \mathrm{CH}), 130.50$ and $131.18(2 \times$ ipso-C of PMB rings), $133.81\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 138.35$ (ipso-C of phenyl ring) and 159.16 and $159.29(2 \times$ para -C of PMB rings $) ; ~ m / z\left(\mathrm{FAB}^{+}\right)$ $520\left[(\mathrm{M}+1)^{+}, 12 \%\right]$ and 121 (100).

2-O-Benzyl-3,4-bis- O-(p-methoxybenzyl)-d-xylopyranose 15

A solution of glycoside $\mathbf{1 4}(10.2 \mathrm{~g}, 19.6 \mathrm{mmol})$ in dry DMSO $\left(150 \mathrm{~cm}^{3}\right)$ was stirred with freshly sublimed potassium tertbutoxide ($4.4 \mathrm{~g}, 39.2 \mathrm{mmol}$) at $50^{\circ} \mathrm{C}$ for 3.5 h . The dark brown mixture was cooled to room temp. and poured into water (250 cm^{3}). The resultant mixture was extracted with $200 \mathrm{~cm}^{3}$ portions of diethyl ether until TLC showed no further PMBcontaining material to be present in the aqueous layer. The combined organic extracts were washed with saturated aq. KCl $\left(300 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a yellow syrup (10.8 g). This syrup was dissolved in acetone (250 $\left.\mathrm{cm}^{3}\right)$ and heated to $50^{\circ} \mathrm{C}$. Aq. $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 25 \mathrm{~cm}^{3}\right)$ was added and stirring was continued at $50^{\circ} \mathrm{C}$ for 30 min , when TLC (ethyl acetate-hexane 3:2) showed conversion of the prop-1-enyl ethers ($R_{\mathrm{f}} 0.65$) into a product ($R_{\mathrm{f}} 0.45$). Solid $\mathrm{NaHCO}_{3}(5.2 \mathrm{~g})$ was added and the suspension was allowed to cool to room temp. The acetone was evaporated off and the gummy residue was partitioned between diethyl ether ($250 \mathrm{~cm}^{3}$) and water $\left(250 \mathrm{~cm}^{3}\right)$. The aqueous layer was back-extracted with diethyl ether $\left(250 \mathrm{~cm}^{3}\right)$ and the combined organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The orange syrup thus obtained was subjected to flash chromatography (eluent hexane-ethyl acetate $4: 1$, then $1: 1$) to give the title compound as a pale yellow oil which solidified to an off-white solid on storage ($8.20 \mathrm{~g}, 87 \%$ from 14); mp $88-90^{\circ} \mathrm{C}$ (from diethyl ether-light petroleum); $[a]_{\mathrm{D}}+13.8\left(c 1.6, \mathrm{CHCl}_{3}, 1 \mathrm{~h}\right)$ (Found: C, 69.95; H, 6.76. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{7}$ requires C, 69.97; H, $6.72 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 3.02\left(0.7 \mathrm{H}, \mathrm{d}, J 3.1\right.$, exch. $\mathrm{D}_{2} \mathrm{O}$, OH^{α}), 3.21-3.30 ($0.6 \mathrm{H}, \mathrm{m}, 2$ - and 4-H ${ }^{\beta}$), 3.34 ($0.3 \mathrm{H}, \mathrm{d}, J 5.5$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}^{\beta}\right), 3.45\left(0.7 \mathrm{H}\right.$, dd, J 3.7 and $\left.8.9,2-\mathrm{H}^{\alpha}\right), 3.48-$ $3.92\left(3.7 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}^{\alpha}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.80$ and $3.82(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{OMe})$, 4.54-4.89 ($6.3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArCH}_{2} \mathrm{O}, 1-\mathrm{H}^{\mathrm{B}}$), $5.09(0.7$ H , dd, $J 3.1$ and 3.7 , simplifies to d, $J 3.7$ on $\mathrm{D}_{2} \mathrm{O}$ exch., $1-\mathrm{H}^{\alpha}$), 6.83-6.87 ($4 \mathrm{H}, \mathrm{m}$, ortho-H of PMB rings) and 7.23-7.34 (9 H , $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 55.27(\mathrm{OMe}), 60.37\left(\mathrm{C}-5^{\alpha}\right)$, 63.75 (C-5 ${ }^{\beta}$), 72.88, 72.93, 73.37, 74.74, 75.14 and 75.18 $\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 77.18,79.46$ and 80.18 (C-2-C-5 ${ }^{\alpha}$), 82.35 and 82.88 $\left(\mathrm{C}-2^{\beta}\right.$ and $\left.-3^{\beta}\right)$, $91.44\left(\mathrm{C}-1^{\alpha}\right)$, $97.71\left(\mathrm{C}-1^{\beta}\right)$, 113.77, 113.83 and 113.86 (ortho-C of PMB rings), 127.71, 127.96, 128.00, 128.38, 128.47, 129.41, 129.46, 129.64 and 129.86 (Ar), 130.21, 130.36, 130.69 and 130.83 (ipso-C of PMB rings), 137.87 (ipso- C^{α} of benzyl ring), 138.40 (ipso- C^{β} of benzyl ring), 159.20, 159.29 and 159.33 (para-C of PMB rings). The α and β superscripts denote signals arising from the α and β anomers respectively; m / z $\left(\mathrm{FAB}^{-}\right) 633$ [(M + NBA) $\left.)^{+}, 100 \%\right]$.

2-O-Benzyl-3,4-bis- O-(p-methoxybenzyl)-d-xylitol 16

Sodium borohydride ($5.1 \mathrm{~g}, 136 \mathrm{mmol}$) was added in portions over a period of 20 min to a solution of pyranose $\mathbf{1 5}(16.3 \mathrm{~g}$, $33.9 \mathrm{mmol})$ in THF-water $\left(3: 2 ; 500 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 2 h , when TLC (ethyl acetate) showed consumption of starting material ($R_{\mathrm{f}} 0.65$) to give a product (R_{f} $0.4)$. The THF was evaporated off and the gummy aqueous residue was extracted with diethyl ether ($3 \times 200 \mathrm{~cm}^{3}$). The combined organic extracts were washed with aq. $\mathrm{HCl}(1 \mathrm{~mol}$
$\left.\mathrm{dm}^{-3} ; 200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The concentrate was purified by flash chromatography (eluent hexane-ethyl acetate $1: 1$) to give the title compound as a solid ($12.6 \mathrm{~g}, 77 \%$); mp $60-62^{\circ} \mathrm{C}$; []$_{\mathrm{D}}-2.6\left(c 3.1, \mathrm{CHCl}_{3}\right.$) (Found: C, 69.4; H, 7.13. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{7}$ requires C, $\left.69.68 ; \mathrm{H}, 7.1 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $400 \mathrm{MHz}) 2.18\left(1 \mathrm{H}, \mathrm{t}, J 6.2\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.23(1 \mathrm{H}, \mathrm{t}$, $J 6.2$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.56-3.78\left(7 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 2-, 3-\right.$ and $4-\mathrm{H}$, and $\left.5-\mathrm{H}_{2}\right), 3.80(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.56$ and $4.56(2 \mathrm{H}$, $\left.\mathrm{AB}, J_{\mathrm{AB}} 11.6, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.60-4.66(4 \mathrm{H}, \mathrm{m}, 2 \times$ overlapping ArCH2O AB systems), 6.84-6.87 (4 H , m, ortho-H of PMB rings) and $7.22-7.35(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right)$ $55.29(2 \times \mathrm{OMe}), 61.58(\mathrm{C}-1,-5), 72.37,72.75$ and 74.05 $\left(3 \times \mathrm{ArCH}_{2} \mathrm{O}\right), 78.47,78.93$ and $78.99(\mathrm{C}-2-\mathrm{C}-4), 113.92$ (ortho-C of PMB rings), 127.93, 128.03, 128.51 and 129.72 (Ar CH), 129.96 and $130.03(2 \times$ ipso-C of PMB rings), 130.16 (Ar), 138.00 (ipso-C of phenyl ring) and 159.42 and 159.47 ($2 \times$ para -C of PMB rings); $m / z\left(\mathrm{FAB}^{-}\right) 635\left[(\mathrm{M}+\mathrm{NBA})^{-}\right.$, 100%].

1L-1,2,3,4/5-1-Benzyloxy-2,3-dihydroxy-4,5-bis(p-methoxybenzyloxy)cyclopentane 18 and 1L-1,2,4/3,5-3-benzyloxy-1,2-dihydroxy-4,5-bis(p-methoxybenzyloxy)cyclopentane 19

A dry solution of DMSO ($8.5 \mathrm{~cm}^{3}, 120 \mathrm{mmol}$) in methylene dichloride $\left(8 \mathrm{~cm}^{3}\right)$ was added dropwise to a $2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of oxalyl dichloride in methylene dichloride $\left(30.0 \mathrm{~cm}^{3}, 60.0\right.$ mmol) under N_{2} at $-60^{\circ} \mathrm{C}$. After 5 min , a solution of the xylitol $16(11.6 \mathrm{~g}, 24.0 \mathrm{mmol})$ in dry methylene dichloride (50 cm^{3}) was added dropwise over a period of 5 min and stirring was continued at $-60^{\circ} \mathrm{C}$ for 15 min , whereupon triethylamine (TEA) ($33.0 \mathrm{~cm}^{3}, 240 \mathrm{mmol}$) was added. The suspension was warmed to room temp. Methylene dichloride ($200 \mathrm{~cm}^{3}$) was added and the solution was washed successively with water (200 cm^{3}) and brine ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The orange syrup thus obtained was dissolved in toluene ($500 \mathrm{~cm}^{3}$) and the solution was heated under reflux with continuous azeotropic removal of water (Dean-Stark trap) for 1 h . The solution was cooled under a stream of N_{2} and concentrated. The orange/brown syrup thus obtained was dissolved in freshly distilled, dry THF ($100 \mathrm{~cm}^{3}$) and added dropwise during 20 min to a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of samarium(II) iodide in THF ($600 \mathrm{~cm}^{3}, 60.0 \mathrm{mmol}$) containing freshly distilled, dry 2-methylpropan-2-ol ($6.8 \mathrm{~cm}^{3}, 72.0 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$ under a stream of N_{2}. The blue/black mixture was stirred for 1 h at $-60^{\circ} \mathrm{C}$ and for 3 h at room temp., then was poured into aq. HCl $\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 800 \mathrm{~cm}^{3}\right)$. The resulting emulsion was extracted with diethyl ether $\left(2 \times 500 \mathrm{~cm}^{-3}\right)$. The combined organic extracts were washed with $5 \%(\mathrm{w} / \mathrm{v})$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(600 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Flash chromatography (eluent CHCl_{3}-acetone $10: 1$) gave many mobile PMB-containing shadow spots (not isolated).

Further elution gave title compound 18 as an orange syrup ($\sim 1.40 \mathrm{~g}, 12 \%$), which could not be separated from an impurity. A sample of this syrup (450 mg) was stirred at room temp. with 2,2-dimethoxypropane-DMF $\left(1: 2 ; 30 \mathrm{~cm}^{3}\right)$ containing toluene- p-sulfonic acid (PTSA) (10 mg) for 2 h ; neutralisation with TEA $\left(10 \mathrm{~cm}^{3}\right)$ followed by concentration and column chromatography (eluent CHCl_{3}-acetone $10: 1$) gave isopropylidene acetal $\mathbf{2 0}$ as a pale yellow syrup; $R_{\mathrm{f}} 0.73\left(\mathrm{CHCl}_{3}\right.$-acetone 5:1); [$\alpha]_{\mathrm{D}} 0.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$ (Found: C, 71.1; H, 6.97. $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{7}$ requires $\mathrm{C}, 71.50 ; \mathrm{H}, 6.97 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 1.29$ and $1.45(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Me}), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.79$ and $3.80(6 \mathrm{H}, 2$ $\mathrm{s}, 2 \times \mathrm{OMe})$, 4.04-4.12 $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 4.38-4.84(8 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}, 3 \times \mathrm{ArCH}_{2} \mathrm{O}$ AB systems), 6.84-6.88(4 H, m, ortho -H of PMB rings) and 7.24-7.41 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z\left(\mathrm{FAB}^{+}\right) 520$ $\left(\mathrm{M}^{+}, 22 \%\right), 519\left([\mathrm{M}-1]^{+}, 82\right), 399\left([\mathrm{M}-\mathrm{PMB}]^{+}, 12\right)$ and 121 (100).

Further elution gave compound 19 as a waxy solid (3.55 g , 31% from 16); $R_{\mathrm{f}} 0.13\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.10: 1\right) ;[a]_{\mathrm{D}}+2.6(c 2.7$, CHCl_{3}) (Found: C, 69.8; H, 6.77. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{7}$ requires C, 69.97; $\mathrm{H}, 6.72 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 2.59(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 3.78$
and $3.79(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.83-3.87(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}), 4.01$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.56(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH} \mathrm{H}_{2} \mathrm{O}\right), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 6.84-6.89(4 \mathrm{H}, \mathrm{m}$, ortho -H of PMB rings) and 7.20-7.36 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100\right.$ $\mathrm{MHz}) 55.27(2 \times \mathrm{OMe}), 71.56,71.73$ and $72.04\left(3 \times \mathrm{ArCH}_{2} \mathrm{O}\right)$, 73.88 (C-1, -2), $85.26,85.90$ and 86.25 (C-3-C-5), 113.75 and 113.84 (ortho-C of PMB rings), 127.79, 127.91, 128.42 and 129.61 (Ar), 130.05 and 130.08 ($2 \times$ ipso -C of PMB rings), 138.06 (ipso-C of benzyl ring) and 159.23 and $159.31(2 \times$ paraC of PMB rings); $m / z\left(\mathrm{FAB}^{+}\right) 359\left[(\mathrm{M}-\mathrm{PMB})^{+}, 80 \%\right]$ and 121 (100); $\left(\mathrm{FAB}^{-}\right) 479\left[(\mathrm{M}-1)^{-}, 80 \%\right]$ and $633\left[(\mathrm{M}+\mathrm{NBA})^{-}\right.$, 100].

1L-1,2,4/3,5-3-Benzyloxy-1,2,4,5-tetrahydroxycyclopentane 21

Aq. $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 50 \mathrm{~cm}^{3}\right)$ was added to a solution of compound $19(1.50 \mathrm{~g}, 3.1 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ and the solution was heated under reflux for 2.5 h , when TLC (ethyl acetate) showed consumption of starting material ($R_{\mathrm{f}} 0.55$) to give a product ($R_{\mathrm{f}} 0.02-0.05$). The solution was cooled, concentrated, and toluene $\left(2 \times 200 \mathrm{~cm}^{3}\right)$ and then ethanol $\left(200 \mathrm{~cm}^{3}\right)$ were added and then evaporated from the residue. The brown syrup thus obtained was subjected to flash chromatography (loading solvent methylene dichloride; eluent ethyl acetatemethanol 9:1) to give the title compound as a solid (592 mg , 76%); $R_{\mathrm{f}} 0.33$ (ethyl acetate-methanol 4:1); mp $92-93{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}$ +14.5 (c 3.5, MeOH) (Found: C, 60.2; H, 6.72. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.98 ; \mathrm{H}, 6.72 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O} ; 270 \mathrm{MHz}\right.$; ref. int. HDO) 3.71-3.81 ($4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}$), $4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.65$ and 4.71 (2 $\left.\mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 13.5, \mathrm{PhCH}_{2} \mathrm{O}\right)$ and $7.38-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right.$; $67 \mathrm{MHz}) 71.71(\mathrm{CH}), 71.79\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 72.78,77.13$ and 78.20 $(3 \times \mathrm{CH}), 87.16(\mathrm{C}-3), 128.02,128.24$ and $128.36(\mathrm{Ph})$ and 136.68 ($\mathrm{pso-C}$); $\mathrm{m} / \mathrm{z}\left(\mathrm{FAB}^{-}\right) 239\left[(\mathrm{M} \mathrm{-} \mathrm{1)})^{-}, 53 \%\right]$ and 393 $\left[(\mathrm{M}+\mathrm{NBA})^{-}, 100\right]$.

Determination of stereochemistry of diol 19 and derivatives

A dispersion of $10 \% \mathrm{Pd} / \mathrm{C}(495 \mathrm{mg})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of tetraol $21(500 \mathrm{mg}, 2.07 \mathrm{mmol})$ in methanol (40 cm^{3}) and the mixture was hydrogenated at $40-50 \mathrm{psi}$ at room temp. for 40 h . The suspension was filtered and the residue was well washed with water $\left(20 \mathrm{~cm}^{3}\right)$. The combined filtrate and washings were concentrated to give a pale yellow oil (246 mg , 79%). Trituration with ethanol gave crystalline $1,2,4 / 3,5-$ cyclopentanepentaol 22, mp $147-149^{\circ} \mathrm{C}\left[\right.$ lit.,,$^{23} 149-150{ }^{\circ} \mathrm{C}$; lit., ${ }^{24} 149.5-150.5^{\circ} \mathrm{C}$. A sample was benzoylated with benzoyl chloride in pyridine to give pentabenzoate $\mathbf{2 3}, \mathrm{mp} 176-177.5^{\circ} \mathrm{C}$ (from EtOH) [lit., ${ }^{23} 172-173^{\circ} \mathrm{C}$].

1L-1,2,4/3,5-3-Benzyloxy-1,2,4,5-tetrakis[bis(benzyloxy)phosphoryloxy]cyclopentane 24

A mixture of bis(benzyloxy)(diisopropylamino)phosphine ${ }^{26}$ ($551 \mathrm{mg}, 1.59 \mathrm{mmol}$), $1 H$-tetrazole ($167 \mathrm{mg}, 2.39 \mathrm{mmol}$) and dry methylene dichloride ($3 \mathrm{~cm}^{3}$) was vigorously stirred at room temp. for 20 min , whereupon tetraol $21(48 \mathrm{mg}, 199 \mu \mathrm{~mol}$) was added. The suspension was stirred for a further 2 h , when TLC (ethyl acetate-methanol 4:1) showed consumption of starting material ($R_{\mathrm{f}} 0.4$) to give a product ($R_{\mathrm{f}} 0.65$), and ${ }^{31} \mathrm{P}$ NMR spectroscopy showed a complex pattern of phosphite peaks at δ_{P} 139.00-140.05, together with a little unchanged phosphitylating reagent-tetrazolide intermediate ($\delta_{\mathrm{P}} 127.4$). The suspension was cooled to $0^{\circ} \mathrm{C}$ and MCPBA ($550 \mathrm{mg}, 3.19$ $\mathrm{mmol})$ was added. The suspension was allowed to warm to room temp. and was then stirred for 15 min . The clear solution was diluted with ethyl acetate $\left(50 \mathrm{~cm}^{3}\right)$ and this solution was washed successively with $10 \%(\mathrm{w} / \mathrm{v})$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(50 \mathrm{~cm}^{3}\right)$, saturated aq. NaHCO_{3} solution ($2 \times 50 \mathrm{~cm}^{3}$) and saturated aq $\mathrm{NaCl}\left(50 \mathrm{~cm}^{3}\right)$, dried, filtered and concentrated. The concentrate was purified by flash chromatography (eluent $\mathrm{CHCl}_{3}-$ acetone $20: 1$) to give the title compound as a pale yellow syrup ($163 \mathrm{mg}, 64 \%$); $R_{\mathrm{f}} 0.45\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.5: 1\right) ;[a]_{\mathrm{D}}+7.5(c 2.7$, CHCl_{3}) [Found: M^{+}, 1281.3484. $\mathrm{C}_{68} \mathrm{H}_{69} \mathrm{O}_{17} \mathrm{P}_{4}(M+\mathrm{H})$ requires
$m / z, 1281.3485] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 5-\mathrm{H})$, 4.50 and $4.53\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.6, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.83-5.08(19 \mathrm{H}$, $\left.\mathrm{m}, 8 \times \mathrm{PhCH}_{2} \mathrm{O}, 3 \times \mathrm{CH}\right), 5.22(1 \mathrm{H}$, ddd, $J 4.3,7.3$ and 7.9 , $\mathrm{CH})$ and $7.16-7.27(45 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 69.51$, 69.57, 69.62, 69.68, 69.73 and $69.81\left(\mathrm{PhCH}_{2} \mathrm{O}\right.$ of benzyl esters), $72.29\left(\mathrm{PhCH}_{2} \mathrm{O}\right.$ of benzyl ether), 82.68, 82.75, 83.25, 83.28 and 83.99 (C-1-C-5), 127.85, 127.94, 127.98, 128.05, 128.33, 128.51, 128.71 and $128.82(\mathrm{Ph}), 135.44,135.51$ and 135.59 (ipso-C of benzyl ester rings) and 136.98 (ipso-C of benzyl ether ring); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 162 \mathrm{MHz}\right)-2.30,-2.08,-2.06$ and $-1.95(4 \mathrm{~s}) ; m / z$ $\left(\mathrm{FAB}^{+}\right) 1281\left[(\mathrm{M}+1)^{+}, 68 \%\right]$ and 91 (100).

1d-1,2,4/3,5-Cyclopentanepentaol 1,2,3,4-tetrakisphosphate 6
Sodium hydrogen carbonate ($45 \mathrm{mg}, 534 \mu \mathrm{~mol}$) and a suspension of $10 \% \mathrm{Pd} / \mathrm{C}(190 \mathrm{mg})$ in water $\left(5 \mathrm{~cm}^{3}\right)$ were added to a solution of compound $24(163 \mathrm{mg}, 127 \mu \mathrm{~mol})$ in methanol (20 cm^{3}) and the mixture was hydrogenated at $40-45 \mathrm{psi}$ at room temp. for 48 h to give compound $\mathbf{6}$ essentially quantitatively, as judged by NMR analysis. The suspension was filtered and the residue was well washed with water. The combined filtrate and washings were concentrated to remove methanol, and portions of the resultant solution were purified by ion-exchange chromatography, eluting with a gradient of TEAB $\left(0-1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$, pH 7.5. The triethylammonium salt of compound 6 eluted between 800 and $900 \mathrm{mmol} \mathrm{dm}^{-3}$ buffer. Fractions containing compound 6, as judged by total phosphate assay, ${ }^{27,28}$ were combined and concentrated to give a residue, to which methanol $\left(2 \times 200 \mathrm{~cm}^{3}\right)$ was added and then evaporated to give compound 6 as its triethylammonium salt; $[a]_{\mathrm{D}}-23(c 0.9$ calc. for free acid, TEAB, $\mathrm{pH} \sim 8$) (Found: M^{-}, 468.9085. $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{O}_{17} \mathrm{P}_{4}[M-\mathrm{H}]$ requires $\mathrm{m} / \mathrm{z}, 468.9103) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} \sim 4 ; 400 \mathrm{MHz}\right.$; ref. int. HDO) $4.15(1 \mathrm{H}, \mathrm{t}, J 6.0,5-\mathrm{H}), 4.27(1 \mathrm{H}$, ddd, $J 4.3,4.6$ and 8.9, $\left.\mathrm{CHOPO}_{3}\right), 4.39\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, $\left.\mathrm{CHOPO}_{3}\right)$ and 4.49-4.56 (2 $\left.\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHOPO}_{3}\right) ; \delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} \sim 4 ; 162 \mathrm{MHz}\right.$) (${ }^{1} \mathrm{H}$-coupled) -0.48 ($1 \mathrm{P}, \mathrm{d}, J 9.9$), $-0.40(1 \mathrm{P}, \mathrm{d}, J 9.0),-0.27$ ($1 \mathrm{P}, \mathrm{d}, J 8.6$) and $-0.15(1 \mathrm{P}, \mathrm{d}, J 9.4) ; m / z 469\left[(\mathrm{M}-1)^{-}, 100 \%\right]$.

Stannylene-mediated benzylation of diol 19

A mixture of the cyclopentane $19(1.79 \mathrm{~g}, 3.73 \mathrm{mmol})$, dibutyltin oxide ($1.02 \mathrm{~g}, 4.10 \mathrm{mmol}$), tetrabutylammonium bromide $(1.20 \mathrm{~g}, 3.73 \mathrm{mmol})$, benzyl bromide ($0.53 \mathrm{~cm}^{3}, 4.5 \mathrm{mmol}$) and acetonitrile $\left(150 \mathrm{~cm}^{3}\right)$ was heated under reflux for 24 h via a Soxhlet thimble containing $4 \AA$ molecular sieves, when TLC $\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.10: 1\right)$ indicated consumption of starting material ($R_{\mathrm{f}} 0.05$) to give a product ($R_{\mathrm{f}} 0.6$). The mixture was cooled and the solvent was evaporated off. The residue was dissolved in diethyl ether ($250 \mathrm{~cm}^{3}$) and this solution was vigorously stirred with saturated aq. $\mathrm{NaHCO}_{3}\left(150 \mathrm{~cm}^{3}\right)$ for 1 h . The resulting suspension was filtered through Celite and the residue was well washed with diethyl ether. The combined organic extract and washings were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by flash chromatography (eluent $\mathrm{CHCl}_{3}-$ acetone $20: 1$) gave a waxy solid ($1.84 \mathrm{~g}, 87 \%$) which ran as a single spot on TLC in the following systems: methylene dichloride-acetone ($30: 1$) ($R_{\mathrm{f}} 0.6$); ethyl acetate-hexane ($4: 1$) ($R_{\mathrm{f}} 0.65$); diethyl ether ($R_{\mathrm{f}} 0.55$); diethyl ether-light petroleum (4:1) $\left(R_{\mathrm{f}} 0.4\right)$; methylene dichloride-methanol $(30: 1)\left(R_{\mathrm{f}} 0.24\right.$ 0.38), but which was shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy to be a $\sim 1: 1$ mixture of bisbenzyl ethers 25 and 26 (Found: C, 73.7, H, 6.73. $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{7}$ requires $\left.\mathrm{C}, 73.65 ; \mathrm{H}, 6.72 \%\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100\right.$ $\mathrm{MHz}) 55.29(\mathrm{OMe}), 71.52,71.58,71.84,72.15$ and 72.29 $\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 72.97$ and $73.02(\mathrm{CHOH}), 81.18,84.44,84.82$, $85.37,86.28$ and 86.65 (alkylated ring CH), 113.73 and 113.79 (ortho-C of PMB rings), 127.65, 127.72, 127.83, 127.93, 128.05, 128.36, 128.57, 129.44, 129.55 and 129.59 (Ar), 130.17 and 130.25 (ipso-C of PMB rings), 137.51, 138.13 and 138.22 (ipsoC of benzyl rings) and 159.20 and 159.23 (para-C of PMB rings); $m / z\left(\mathrm{FAB}^{+}\right) 570\left(\mathrm{M}^{+}, 12 \%\right), 449\left[(\mathrm{M}-\mathrm{PMB})^{+}, 90\right]$ and 121 (100).

1L-1,2,4/3,5-1,3-Bisbenzyloxy-2,4,5-trihydroxycyclopentane 27 and 1d-1,2,4/3,5-1,5-bisbenzyloxy-2,3,4-trihydroxycyclopentane 28
Aq. $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 40 \mathrm{~cm}^{3}\right)$ was added to a solution of the mixture of bisbenzyl ethers 25 and $26(1.63 \mathrm{~g}, 2.86 \mathrm{mmol})$ in ethanol $\left(80 \mathrm{~cm}^{3}\right)$ and the solution was heated under reflux for 2 h , when TLC $\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.10: 1\right)$ showed consumption of starting material ($R_{\mathrm{f}} 0.5$) to give a product $\left(R_{\mathrm{f}} 0\right)$. The solution was cooled, the solvents were evaporated off, and ethanol $\left(2 \times 150 \mathrm{~cm}^{3}\right)$ was added to and evaporated from the residue. The syrup thus obtained was subjected to flash chromatography (eluent CHCl_{3}-acetone $8: 1$, then $3: 1$) to give triol $\mathbf{2 7}$ as a syrup which crystallised on storage ($400 \mathrm{mg}, 42 \%$); $R_{\mathrm{f}} 0.3\left(\mathrm{CHCl}_{3}-\right.$ acetone 1:1); mp 92-93 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+29.7$ (c 1.1, CHCl_{3}) (Found: M^{+}, 331.1533. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ requires $\mathrm{m} / \mathrm{z}, 331.1545$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 2.93(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times \mathrm{OH}), 3.67(1 \mathrm{H}, \mathrm{dd}$, $J 2.9$ and $5.9,1-$ or $3-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{t}, J 7.3,3-$ or $1-\mathrm{H}), 3.79$ $(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $7.3,4$ - or $5-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and 5.9 , $2-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{t}, J 7.3,5$ - or $4-\mathrm{H}), 4.58$ and $4.65\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ 11.7, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.59$ and $4.64\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.7, \mathrm{PhCH}_{2} \mathrm{O}\right)$ and $7.25-7.34(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 71.93\left(\mathrm{PhCH}_{2} \mathrm{O}\right)$, $72.02(\mathrm{C}-2), 72.75(\mathrm{PhCH} 2 \mathrm{O}), 78.62$ and $78.86(\mathrm{C}-4,-5), 81.14$ and 87.71 (C-1, -3), 127.83, 127.96, 128.09, 128.25, 128.47, 128.53 and $128.67(\mathrm{Ph})$ and 137.29 and 137.78 ($2 \times$ ipso-C); m / z $\left(\mathrm{FAB}^{-}\right) 329\left[(\mathrm{M}-1)^{-}, 30 \%\right]$ and 483 [($\left.\left.\mathrm{M}-\mathrm{NBA}\right)^{-}, 100\right]$.
A sample of compound 27 was converted into triacetate 29 with acetic anhydride in pyridine; $R_{\mathrm{f}} 0.6\left(\mathrm{CHCl}_{3}\right.$-acetone $\left.10: 1\right)$; $[a]_{\mathrm{D}}+15.4$ (c 3.4, CHCl_{3}) (Found: C, 65.9; H, 6.13. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{8}$ requires $\mathrm{C}, 65.76 ; \mathrm{H}, 6.19 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 2.04,2.05$ and $2.09\left(9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{MeCO}_{2}\right), 4.01-4.06(2 \mathrm{H}, \mathrm{m}, 1-, 3-\mathrm{H})$, 4.53-4.65 ($4 \mathrm{H}, \mathrm{m}, 2 \times$ overlapping $\mathrm{PhCH}_{2} \mathrm{O} \mathrm{AB}$ systems), $5.11-5.14(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 4-, 5-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 5.4 , 5- or 4-H) and 7.25-7.35 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z $\left(\mathrm{FAB}^{+}\right) 457$ $\left[(M+1)^{+}, 30 \%\right]$ and $91(100)$.

Further elution (eluent CHCl_{3}-acetone 2:1) gave triol $\mathbf{2 8}$ as a solid ($320 \mathrm{mg}, 34 \%$); $R_{\mathrm{f}} 0.2\left(\mathrm{CHCl}_{3}\right.$-acetone $1: 1$); $\mathrm{mp} 85-87^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}} 0.0\left(c \quad 1.2, \mathrm{CHCl}_{3}\right)$ (Found: C, 68.7; H, 6.61. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 69.06 ; \mathrm{H}, 6.72 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 3.75-3.88$ (7 $\mathrm{H}, \mathrm{m}, 3 \times \mathrm{OH}, 4 \times \mathrm{CH}), 3.93(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}), 4.49(1 \mathrm{H}, \mathrm{AB}$, $\left.J_{\mathrm{AB}} 11.6, \mathrm{PhCHHO}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.58\left(1 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}}\right.$ 11.6, PhCHHO$)$ and $7.21-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100\right.$ $\mathrm{MHz}) 71.89$ and $72.24\left(2 \times \mathrm{PhCH}_{2} \mathrm{O}\right), 73.74,78.80,79.99$ 80.14 and 86.17 (C-1-C-5), 127.69, 127.80, 127.96, 128.07, $128.18,128.36$ and $128.49(\mathrm{Ph})$ and 137.38 and $137.95(2 \times$ ipsoC); $m / z\left(\mathrm{FAB}^{+}\right) 331\left[(\mathrm{M}+1)^{+}, 30 \%\right]$ and 91 (100).

A sample of triol 28 was converted into triacetate $\mathbf{3 0}$ by treatment with acetic anhydride in pyridine; $R_{\mathrm{f}} 0.55\left(\mathrm{CHCl}_{3}-\right.$ acetone $10: 1$); $[a]_{\mathrm{D}}+15.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$ (Found: C, 65.7; H, 6.24. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{8}$ requires C, $\left.65.76 ; \mathrm{H}, 6.19 \%\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400\right.$ $\mathrm{MHz}) 2.05,2.07$ and $2.09\left(9 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{MeCO}_{2}\right), 3.97(1 \mathrm{H}, \mathrm{dd}$, $J 4.9$ and $5.4,1$ or $5-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{t}, J 5.4,5-$ or $1-\mathrm{H}), 4.52$ and $4.56\left(2 \mathrm{H}, \mathrm{AB}, J_{\mathrm{AB}} 11.7, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.13$ $(1 \mathrm{H}, \mathrm{t}, J 4.9,2$ - or $4-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $5.4,4$ - or $2-\mathrm{H})$, $5.27(1 \mathrm{H}, \mathrm{t}, J 4.9,3-\mathrm{H})$ and $7.25-7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{FAB}^{+}\right) 457\left[(\mathrm{M}+1)^{+}, 26 \%\right]$ and 91 (100).

1L-1,2,4/3,5-1,3-Bisbenzyloxy-2,4,5-tris[bis(benzyloxy)phosphoryloxy]cyclopentane 31

A mixture of bis(benzyloxy)(diisopropylamino)phosphine ${ }^{26}$ ($960 \mathrm{mg}, 2.78 \mathrm{mmol}$) 1 H -tetrazole ($292 \mathrm{mg}, 4.17 \mathrm{mmol}$) and dry methylene dichloride $\left(4 \mathrm{~cm}^{3}\right)$ was vigorously stirred at room temp. for 15 min , whereupon triol $27(153 \mathrm{mg}, 464 \mu \mathrm{~mol})$ was added and stirring was continued for 1 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and MCPBA ($960 \mathrm{mg}, 5.56 \mathrm{mmol}$) was added. The mixture was stirred at room temp. for 10 min , then was diluted with ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$. The solution was washed successively with $10 \%(w / v)$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\left(50 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaCl}\left(50 \mathrm{~cm}^{3}\right)$, dried, filtered and concentrated. The concentrate was purified by flash chromatography (eluent CHCl_{3}-acetone $20: 1$) to give the
title compound as an oil ($440 \mathrm{mg}, 85 \%$); $[a]_{\mathrm{D}}+6.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ (Found: C, 66.2; H, 5.72. $\mathrm{C}_{61} \mathrm{H}_{61} \mathrm{O}_{14} \mathrm{P}_{3}$ requires $\mathrm{C}, 65.93 ; \mathrm{H}$, $5.54 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 4.12-4.20(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 3-\mathrm{H})$, 4.49-4.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{PhC} H \mathrm{HO}, 2-, 4-\mathrm{and} 5-\mathrm{H}), 4.81-5.07(15 \mathrm{H}$, $\mathrm{m}, 15 \times \mathrm{PhCHHO})$ and $7.19-7.26(40 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 100\right.$ $\mathrm{MHz}) 69.46,69.51$ and $69.64\left(\mathrm{PhCH}_{2} \mathrm{O}\right.$ of benzyl esters), 72.26 and $72.29\left(\mathrm{PhCH}_{2} \mathrm{O}\right.$ of benzyl ethers), $76.85,80.03$ and 83.19 [with C-P coupling], 83.70 [with C-P coupling], 84.36 (C-1-C-5), $127.78,127.85,128.02,128.31,128.38,128.49$ and 128.69 (Ph), 135.50, 135.57, 135.62 and 135.70 (ipso-C of benzyl ester rings) and 137.18 (ipso-C of benzyl ether ring[s]); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3} ; 162\right.$ $\mathrm{MHz})-2.27,-2.13$ and $-1.87(3 \mathrm{~s}) ; m / z(\mathrm{FAB})^{+} 1111$ $\left[(M+1)^{+}, 60 \%\right]$ and $91(100)$.

1D-1,2,4/3,5-Cyclopentanepentaol 1,3,4-trisphosphate 5

Sodium hydrogen carbonate ($40 \mathrm{mg}, 466 \mu \mathrm{~mol}$) and a suspension of $10 \% \mathrm{Pd} / \mathrm{C}(166 \mathrm{mg})$ in water $\left(5 \mathrm{~cm}^{3}\right)$ were added to a solution of compound $31(167 \mathrm{mg}, 150 \mu \mathrm{~mol})$ in methanol (20 cm^{3}) and the mixture was hydrogenated at 40 psi at room temp. for 48 h to give compound 5 essentially quantitatively, as judged by NMR analysis. The suspension was filtered and the filtrate was well washed with water. The combined filtrate and washings were partially evaporated to remove methanol and portions of the resulting solution were purified by ion-exchange chromatography on Q Sepharose fast-flow resin, eluting with a gradient of TEAB buffer $\left(0-1 \mathrm{~mol} \mathrm{dm}^{-3}\right), \mathrm{pH} 7.5$. The triethylammonium salt of compound 5 was eluted between 580 and $670 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ buffer. Fractions containing compound 5, as judged by total phosphate assay, ${ }^{27,28}$ were combined and concentrated to give a residue from which methanol ($2 \times 200 \mathrm{~cm}^{3}$) was evaporated to give title trisphosphate $\mathbf{5}$ as its tris(triethylammonium) salt; $[a]_{\mathrm{D}}-26.2$ (c 2.0 calc. for free acid, TEAB, pH ~ 8) (Found: $\mathrm{M}^{-}, 388.9456 . \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{14} \mathrm{P}_{3}[M-\mathrm{H}]^{-}$requires m / z, 388.9440); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{pH} \sim 4,400 \mathrm{MHz}\right.$; ref. int. HDO) 3.98-4.02 $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}), 4.08-4.15(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH})$ and $4.20(1 \mathrm{H}$, ddd, $\left.J_{\mathrm{HP}} 8.8, J 4.0,4.3, \mathrm{CHOPO}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} \sim 4 ; 100 \mathrm{MHz}\right)$ 74.30 (C-2 or -5), $78.40\left({ }^{3} J_{\mathrm{CP}} 5.5, \mathrm{C}-5\right.$ or -2) and 79.12, 83.35 and 84.08 ($\mathrm{C}-1,-3$ and -4 [with $\mathrm{C}-\mathrm{P}$ coupling]); $\delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O} ; \mathrm{pH} \sim 7\right.$; 162 MHz) (${ }^{1} \mathrm{H}$-coupled) 0.79 ($1 \mathrm{P}, \mathrm{d}, J 9.7$), 1.16 ($1 \mathrm{P}, \mathrm{d}, J 8.8$) and $1.79(1 \mathrm{P}, \mathrm{d}, J 7.3) ; m / z\left(\mathrm{FAB}^{-}\right) 389\left[(\mathrm{M}-1)^{-}, 100 \%\right]$.

Acknowledgements

We thank the Wellcome Trust (Programme Grant 045491) for financial support, Professors P. Sinaÿ and R. H. Gigg for helpful discussions, and Professor S. DeLisle, University of Maryland, for the preliminary Xenopus experiments.

References

1 M. J. Berridge, Nature (London), 1993, 361, 315.
2 T. C. Südhof, C. L. Newton, B. T. Archer III, Y. A. Ushkaryov and G. A. Mignery, EMBO J., 1991, 10, 3199; O. Blondel, J. Takeda, H. Janssen, S. Seino and G. I. Bell, J. Biol. Chem., 1993, 268, 11356 ; C. A. Ross, S. K. Danoff, M. J. Schell, S. H. Snyder and A. Ullrich, Proc. Natl. Acad. Sci. USA, 1992, 89, 4265; T. Monkawa, A. Miyawaki, T. Sugiyama, H. Yoneshima, M. Yamamoto-Hino, T. Furuichi, T. Saruta, M. Hasegawa and K. Mikoshiba, J. Biol. Chem. 1995, 270, 14700.
3 I. R. Batty, S. R. Nahorski and R. F. Irvine, Biochem. J., 1985, 232, 211.

4 P. J. Cullen, A. P. Dawson and R. F. Irvine, Biochem. J., 1995, 305, 139.

5 P. J. Cullen, J. J. Hsuan, O. Truong, A. J. Letcher, T. R. Jackson, A. P. Dawson and R. F. Irvine, Nature (London), 1995, 376, 527.

6 B. V. L. Potter and D. Lampe, Angew. Chem., Int. Ed. Engl., 1995, 34, 1933.
7 A. M. Riley, D. J. Jenkins and B. V. L. Potter, J. Am. Chem. Soc., 1995, 117, 3300.
8 D. J. Jenkins, A. M. Riley and B. V. L. Potter, J. Org. Chem., 1996, 61, 7719.
9 J. L. Chiara, W. Cabri and S. Hanessian, Tetrahedron Lett., 1991, 32, 1125.

10 E. Perrin, J.-M. Mallet and P. Sinaÿ, Carbohydr. Lett., 1995, 1, 215.
11 K. Fukase, S. Hase, T. Ikenaka and S. Kusumoto, Bull. Chem. Soc Jpn., 1992, 65, 436.
12 N. Moitessier, F. Chrétien, Y. Chapleur and C. Humeau, Tetrahedron Lett., 1995, 36, 8023.
13 M. E. Haque, T. Kikuchi, K. Yoshimoto and Y. Tsuda, Chem Pharm. Bull., 1985, 33, 2243.
14 J.-L. Montchamp, F. Tian, M. E. Hart and J. W. Frost, J. Org. Chem., 1996, 61, 3897.
15 (a) J. J. Naleway, C. R. H. Raetz and L. Anderson, Carbohydr. Res., 1988, 179, 199; (b) S. Rio, J.-M. Beau and J.-C. Jacquinet, Carbohydr. Res., 1991, 219, 71.
16 K. Takeo, M. Nakagen, Y. Teramoto and Y. Nitta, Carbohydr. Res., 1990, 201, 261; R. F. Helm, J. Ralph and L. Anderson, J. Org. Chem., 1991, 56, 7015; L. Ziser and S. G. Withers, Carbohydr. Res., 1994, 265, 9.
17 P. Grice, S. V. Ley, J. Pietruszka, H. W. M. Priepke and S. L. Warriner, J. Chem. Soc., Perkin Trans. 1, 1997, 351.
18 D. J. Jenkins and B. V. L. Potter, Carbohydr. Res., 1996, 287, 169.
19 M. Carpintero, A. Fernández-Mayoralas and C. Jaramillo, J. Org. Chem., 1997, 62, 1916.
20 J. Gigg and R. Gigg, J. Chem. Soc. C, 1966, 82; T. Desai, J. Gigg, R. Gigg and E. Martín-Zamora, Carbohydr. Res., 1994, 262, 59.

21 S. Takahashi, T. Kinoshita and M. Takahashi, J. Antibiot., 1994, 47, 95; M. Takahashi, K. Tanzawa and S. Takahashi, J. Biol. Chem., 1994, 269, 369.

22 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651.
23 H. Z. Sable, T. Anderson, B. Tolbert and T. Posternak, Helv. Chim. Acta, 1963, 46, 1157.
24 S. J. Angyal and B. M. Luttrell, Aust. J. Chem., 1970, 23, 1831.
25 J. L. Chiara and M. Martín-Lomas, Tetrahedron Lett., 1994, 35, 2969.

26 K.-L. Yu and B. Fraser-Reid, Tetrahedron Lett., 1988, 29, 979.
27 A. P. Briggs, J. Biol. Chem., 1922, 53, 13.
28 D. A. Sawyer and B. V. L. Potter, J. Chem. Soc., Perkin Trans. 1, 1992, 923.
29 T. Ogawa, Y. Takahashi and M. Matsui, Carbohydr. Res., 1982, 102, 207.

30 S. Ozaki, Y. Kondo, N. Shiotani, T. Ogasawara and Y. Watanabe, J. Chem. Soc., Perkin Trans. 1, 1992, 729; T. Desai, J. Gigg, R. Gigg and E. Martín-Zamora, in Synthesis in Lipid Chemistry, ed. J. H. P. Tyman, Royal Society of Chemistry, London, 1996, pp. 67-92.
31 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.

Paper 7/04867J
Received 8th July 1997
Accepted 29th August 1997

[^0]:

 3

 5

 6
 1D-myo-Inositol 1,4,5-trisphosphate 1, 1D-myo-inositol 1,3,4,5-tetrakisphosphate $\mathbf{2}$ and ring-contracted structures

 The intensive chemical synthesis of inositol polyphosphates and related compounds since 1986 has led to a good under-

